

Q8 Mahler G5 SAE 40

High performance stationary gas engine oil

Description

Q8 Mahler G5 is a high performance gas engine oil, based on premium Group II (hydrotreated) base fluid. This product is designed as part of the Q80ils clean technology program, which benefits from in-house developments and customized solutions. Q8 Mahler G series products meet the challenges of the latest generation (steel piston, high output and low emission) engines, ensuring clean engines in combination with extended drain performance.

Applications

Engine Lean-burn and stoichiometric four-stroke stationary gas engines, including high BMEP type. Operations Mild to severe conditions, including high pressure, high load and high temperature operations. Gas type Natural gas, also suitably for special gases requiring a low ash gas engine oil.

<i>Features</i>	Benefits
Own product development	In-house developed outstanding additive package in combination with a carefully chosen Group II base oil
Extended drain	Excellently balanced gas engine oil, providing outstanding engine cleanliness, low oil consumption with outstanding protection for the cylinder head valves and valve seats, significantly reducing the total operational costs
Engine performance	Outstanding resistance against pre-ignition and knocking ensuring high engine efficiency

Specifications & Approvals

Caterpillar Energy Solutions	CG132, CG170, CG260	INNIO Jenbacher	TA 1000-1109, Type 6 (C & E) - Fuel class A, B, C
Deutz	0199-99-01213	INNIO Jenbacher	TA 1000-1109, Type 6 (F) - Fuel class A
INNIO Jenbacher	TA 1000-1109, Type 2, 3 Series - Fuel class A, B, C	INNIO Jenbacher	TA 1000-1109, catalytic converter approved
INNIO Jenbacher	TA 1000-1109, Type 4 (A & B) - Fuel class A, B, C	Liebherr	
INNIO Jenbacher	TA 1000-1109, Type 4 (C) - Fuel class A, B, C	MWM	0199-99-02105

Properties

	Method	Unit	Typical
Density, 15 ℃	D 4052	g/ml	0,889
Viscosity Grade	-	-	SAE 40
Kinematic Viscosity, 40 °C	D 445	mm²/s	117
Kinematic Viscosity, 100 °C	D 445	mm²/s	13.1
Viscosity Index	D 2270	-	106
Total Base Number	D 2896	mg KOH/g	6.0
Pour Point	D 97	$^{\circ}C$	-12
Flash Point, COC	D 92	$^{\circ}C$	250
Sulfated Ash	D 874	% mass	0.5
Copper Strip, 3 h, 100 °C	D 130	-	1

The figures above are not a specification. They are typical figures obtained within production tolerances.

Remarks

The original manufacturers recommendation should be followed.